Par Antoine Maurice
Associer l’EPS et les Mathématiques, oui c’est possible ! Et cela peut même représenter une solution pour donner du sens à l’école. C’est un peu le message d’Etienne Barraux, Professeur d’EPS agrégé et de Philippe Poirier, Professeur de Mathématiques, tous deux au collège Politzer à la Courneuve. Ainsi, ils ont expérimenté un cycle d’enseignement en Badminton avec une classe de 3ème…
Pouvez-vous nous décrire votre démarche ?
C’est un projet interdisciplinaire entre les Mathématiques et l’EPS. Ainsi, nous utilisons une fiche d’observation commune aux mathématiques (chapitre statistique) et à l’EPS (cycle de badminton) pour mettre en œuvre une dimension partagée de ces deux matières. L’idée est qu’au travers d’un recueil de données précis (typification spatiale et qualitative des frappes réussies lors d’un match) les élèves puissent développer les notions statistiques pour définir leur style de jeu. Ainsi, cette fiche va permettre de suivre l’élève en EPS, en maths, pendant la durée du cycle/chapitre. Par ce biais, les élèves engagent des stratégies d’autorégulation pour mieux adapter leur jeu face à leur adversaire en Badminton. Ils mettent également en acte un chapitre de mathématiques pour une application directe et concrète.
Comment cette idée a-t-elle vu le jour ?
J’ai contacté Philippe pour entrer dans cette démarche interdisciplinaire parce que mes élèves perdaient beaucoup de temps dans le travail d’observation et de recueil de données. Par ailleurs, j’avais du mal à faire une réelle analyse de chaque observation pour les élèves. Le travail d’observation permettait de répondre à une attente de la compétence attendue par les programmes d’EPS, mais sans plus. Je me suis alors rapproché de Philippe pour tenter d’établir un pont pertinent entre ma discipline et la sienne. A la fois, on recherche à donner du sens aux Mathématiques, qui est souvent une discipline abstraite pour les élèves, mais également on rend la fiche d’observation et le travail fait en EPS davantage pertinent. Les maths se servent de l’EPS pour mettre en application, en geste, les notions développées en cours. L’EPS se sert des maths pour apporter un poids « théorique » aux expériences en actes vécues en cours. Le gain de temps est alors tout à fait appréciable. Les élèves s’exercent aux mathématiques dans le gymnase et ils pensent EPS en cours de mathématiques. Nous sommes donc pleinement dans la logique du socle commun qui permet de décloisonner des disciplines et qui valide les compétences de élèves.
Justement comment sur le terrain réussir à faire le pont entre les mathématiques et l’EPS ?
Il nous a fallu plusieurs rencontres, Philippe et moi, pour se caler sur ce qu’on allait faire, ce qu’on allait dire et ce qu’on allait faire faire aux élèves pour que tout le monde en tire des bénéfices. Après plusieurs échanges, j’ai compris que le propre de mathématiques était d’exploiter des données (chiffrées ou non) mais sans rentrer dans l’analyse. Or, si nous aurions pu nous contenter de réaliser une simple exploitation des données en EPS pour les exercices à faire en mathématiques, il nous semblait intéressant d’y apporter une plus-value en analysant le jeu des élèves au regard des applications mathématiques possibles. Comme indiqué précédemment, on établit un double sens aux deux disciplines et c’est ce qui rend ce travail de qualité.
Concrètement notre travail en commun se déroule en trois temps : Une première leçon en EPS où les élèves réalisent 6 matches (par poule de 4), chaque élève rencontre ses adversaires deux fois. Par souci d’organisation, les matchs durent 3 minutes. Lorsqu’un élève ne joue pas, il observe en utilisant une fiche permettant un recueil de données. Les élèves ont à différencier les coups (les échanges renvoyés) symbolisés par des ronds noirs (?) et les points marqués (typifiés par des lettres) ; Une leçon en mathématiques, où on exploite les données recueillies (nombres de points marqués par match, moyennes des scores, pourcentages de points marqués dans des zones précises du terrain…), où les élèves vont construire une fiche d’identité propre à leur jeu. Ce cours est important car il permet une mobilisation concrète des acquis de mathématiques pour l’observation réalisée en EPS. Une seconde leçon d’EPS, codirigée par les deux enseignants pour faire l’analyse du jeu, au regard des éléments statistiques traités. On exploite alors les données obtenues en mathématiques pour faire lumière sur les différents styles de jeu des élèves.
On est donc dans un modèle de recherche simple : recueil des données, méthodologie de traitement des données et résultats, analyse des résultats. Ce dernier moment est le plus important car il fait le réel lien entre les mathématiques et l’EPS. Il montre qu’une application abordée en cours théorique peut apporter une réelle plus-value dans un enseignement.
Comment les élèves vivent-ils cette démarche ? Et quel avantage pour les apprentissages ?
Voir deux profs dans un gymnase n’est pas forcément courant, mais un prof de mathématiques et un prof d’EPS, cela a tendance à dénoter. Cette expérience nouvelle pour l’élève apporte un sens nouveau et engage la complexité dans laquelle nous sommes. De prime abord, et en toute sincérité, je pense qu’ils n’ont pas forcement compris le « pourquoi ?». Dans un premier temps, du point de vue des élèves, ce n’était qu’une fiche d’observation traditionnelle. Le fait de réutiliser les données en mathématiques a commencé à rendre la démarche crédible auprès des élèves. La structure de travail prend une autre dimension, on gagne en profondeur. A ce point, la majorité des élèves comprennent l’intérêt de faire une fiche d’observation correctement remplie (puisqu’ils l’utilisent après). Ce second stade apporte donc partiellement la réponse du « pourquoi ? » : « j’observe dans le cadre de l’EPS, mais comme je vais la réutiliser en mathématiques, j’ai tout intérêt à le faire sérieusement. » La temporalité de l’apprentissage, sa diffusion, semble impliquer davantage les élèves. La mise en avant des résultats pendant le cours de mathématiques a poussé les élèves à aller au-delà de l’application traditionnelle, tel un exercice lambda. Cette activité parle de leur activité au travers d’un filtre défini en amont. En ce sens, les élèves s’attachent davantage à obtenir les « bons » résultats, même pour un élève plus en difficulté en mathématiques. La troisième étape permet de boucler la boucle : la leçon en commun engage les élèves à analyser les données mathématiques pour l’EPS. Beaucoup l’avait déjà plus ou moins fait pendant la leçon en mathématiques. Pourtant, nous apportons tous les deux un versant complémentaire à l’analyse. Philippe a pu démontrer l’utilité de sa discipline dans un moment de vie assez banale, pour permettre une analyse fine, pendant que j’appliquais, via des démonstrations, les données obtenues. La leçon suivante en EPS a été une réussite car les élèves s’engageaient pleinement dans la dimension de rupture, sur des zones ou des frappes peu ou pas exploitées lors de leurs observations personnelles. Dans un sens plus large, les élèves comprennent que « nous travaillons ensemble », et vont plus facilement partager leurs expériences avec nous. Notre activité n’a rien inventé, mais elle a le mérite de raccrocher des élèves plus en difficulté dans une des deux matières. Cela maille les enseignements, sans forcément les complexifier. Avec un peu de recul, cela apporte des gestes sur des mots.
Peut-on imaginer un lien également au niveau de l’évaluation ou d’une pré-évaluation pour utiliser le travail déjà effectué pour travailler justement les statistiques et l’EPS et comparer les évolutions avec la première séance ?
L’évaluation est un élément qui peut être utilisé comme un guide pour la construction du cycle. Aussi, mon enseignement se formalise sur des choix précis, au regard du niveau de classe globale, des exigences du DNB mais également de mes intentions pour les élèves. Néanmoins, il est complexe de se cantonner en termes de connaissances et d’attitudes uniquement sur le recueil de données et les statistiques en badminton, l’activité étant très riche sur ces deux pendants de la compétence.
Cependant, nos avancées nous permettent de penser à plus long terme. En effet, classe de quatrième, notre programmation s’attache à une autre activité de raquette : le tennis de table. Les premières notions enseignées en mathématiques en quatrième s’attachent à la moyenne et aux pourcentages. Ces notions sont essentielles pour la base de notre travail actuel. Aussi, sur des classes à cursus particulier permettant un suivi (présentant des effectifs stables, type classe CHAM ou classe Bi-langue), nous pourrions apporter un enseignement davantage interactif, sur deux années. Cette continuité entre les mathématiques et les activités de raquette programmées au collège pourrait déboucher sur une évaluation commune avec un format : évaluation d’EPS (dont le recueil de données), puis évaluation de Mathématiques avec les données acquises lors de la leçon, le tout sur un après-midi mobilisé à cet effet. C’est une expérience que nous souhaiterions pouvoir engager à terme. Concernant cette année, nous nous sommes tenus au format indiqué au début de la présentation. En effet, l’épreuve logistique : caler son cycle avec celui du collègue, trouver le temps de restitution en leçon 3 a été complexe.
Cette démarche n’ouvre-t-elle pas la porte à d’autres démarches interdisciplinaires ?
Bien sûr que si ! Cette démarche est encourageante car il n’est finalement pas si compliqué de présenter des ponts aux élèves entre les disciplines. Cela est d’autant plus palpable dans notre établissement à la Courneuve, où nos élèves n’ont pas l’environnement social et culturel adéquat pour construire un réceptacle aux connaissances transmises par les enseignants. Cependant, cela demande du temps, de l’intérêt entre les collègues et de nombreux échanges préalable. A priori tous les collègues se connaissent et connaissent les autres disciplines (plus ou moins bien). Cette démarche nous a permis de porter un regard nouveau sur la discipline du collègue, et de l’appréhender avec une sensibilité différente. Elle a permis également de renforcer une dynamique d’équipe, indispensable pour travailler dans cet environnement exigeant. Par ailleurs, cette porte de l’interdisciplinarité, une fois ouverte, engage sur d’autres possibles avec de nouveaux collègues. Le fonctionnement est souvent similaire avec les autres disciplines : la reproductibilité est palpable, il suffit d’avoir une volonté commune de travailler ensemble et parfois d’accepter de sortir (un peu) du cadre programmatique. Il y a parfois des obstacles, des problèmes de timing tant professionnel que personnel, mais cela reste extrêmement enrichissant, tant pour les élèves que pour les enseignants.
Etienne et Philippe, Merci
Contact
Sur le site du Café
|