BACCALAURÉAT GÉNÉRAL

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2024

SCIENCES DE LA VIE ET DE LA TERRE JOUR 2

Durée de l'épreuve : 3 h 30

L'usage de la calculatrice et du dictionnaire n'est pas autorisé.

Dès que ce sujet vous est remis, assurez-vous qu'il est complet. Ce sujet comporte 6 pages numérotées de 1/6 à 6/6.

> Le candidat traite l'exercice 1 ET l'exercice 2 obligatoirement

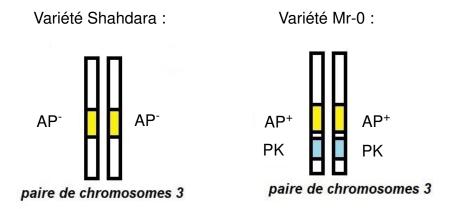
Exercice 1 (7 points):

Montrer comment l'étude de roches sédimentaires permet de reconstituer et de dater les variations climatiques du passé.

Vous rédigerez un texte argumenté. On attend des expériences, des observations, des exemples pour appuyer votre exposé et argumenter votre propos.

Exercice 2 (8 points):

Une protéine « poison » du grain de pollen


En croisant deux variétés d'une plante nommée « arabette des dames », des scientifiques ont remarqué que les proportions des génotypes des descendants étaient différentes de celles attendues à la génération F2.

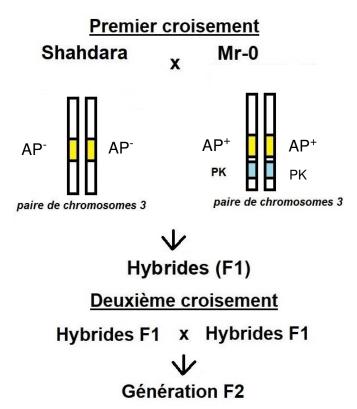
Expliquer les différences entre les proportions attendues et les proportions obtenues à la génération F2.

Vous organiserez votre réponse selon une démarche de votre choix intégrant des données des documents et les connaissances utiles.

Document 1 : Comparaison des gènes présents chez les variétés Shahdara et Mr-0

Deux variétés d'arabette des dames sont croisées : la variété Shahdara et la variété Mr-0. Ces deux variétés diffèrent l'une de l'autre au niveau d'une région du chromosome 3.

Le gène AP et le gène PK sont tellement proches qu'on considère qu'il n'y a pas de crossing-over possible entre eux. Le gène PK n'est présent que chez Mr-0.


Source : d'après Simon et al, 2021 - preprint

Document 2 : Résultats des croisements réalisés

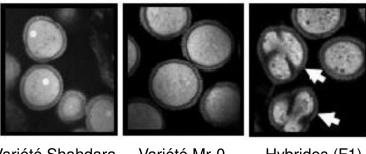
Document 2a : Représentation schématique des croisements réalisés

Les scientifiques réalisent deux croisements successifs :

- les variétés Shahdara et Mr-0 de lignées pures sont croisées,
- les hybrides F1 sont croisés.

Document 2b : Résultats obtenus pour la génération F2

Génotype des descendants de la génération F2 :	AP- AP- (AP-//AP-)	АР ⁺ РК //АР ⁻)	AP+ PK AP+ PK)	Total
Pourcentage de plants attendus	25 %	50 %	25 %	100 %
Nombre de plants obtenus	18	87	73	178
Pourcentage de plants obtenus	10 %	49 %	41 %	100 %

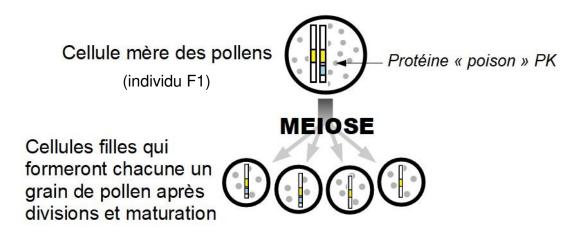

Source: d'après Simon et al, 2021 - preprint

<u>Document 3</u>: Origine de la différence entre les proportions attendues et les proportions obtenues à la génération F2

Les scientifiques suspectent que l'écart observé entre les pourcentages attendus et ceux obtenus à la génération F2 pourrait avoir comme origine une anomalie affectant les grains de pollen de la F1.

Des photographies des grains de pollen issus de la variété Shahdara, de la variété Mr-0 et de plants hybrides (F1) ont été réalisées.

Les grains de pollen viables ont une forme arrondie. Les grains de pollens malformés sont indiqués par des flèches. Ces grains avorteront avant d'atteindre la maturité.


Variété Shahdara Variété Mr-0 Hybrides (F1)

Photographie des grains de pollens formés chez les différents plants d'arabette des dames étudiés

Source : d'après Simon et al, 2021 - preprint

<u>Document 4</u> : La protéine PK, une protéine poison

Le gène PK de la variété Mr-0 code la protéine PK, une protéine « poison » présente dans la cellule mère des pollens. Lorsque le gène PK est présent dans la cellule mère des pollens, **tous les grains de pollen formés** contiennent la protéine PK. La protéine PK nuit au développement des grains de pollen et **réduit** leur chance de survie.

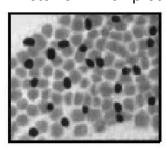
Source : d'après Simon et al, 2021 - preprint

Document 5: La protéine AP produite par Mr-0, un possible antidote?

On s'intéresse à la fonction de la protéine AP produite par l'expression du gène AP chez Mr-0. Cette protéine s'exprime uniquement après la méiose de la cellule mère des pollens. Les scientifiques suspectent que la protéine AP agit comme un antidote en bloquant l'action de la protéine « poison » PK.

Pour vérifier cette hypothèse, les scientifiques étudient la survie des grains de pollen produits par la variété Mr-0. Ces grains de pollen, qui contiennent la protéine « poison » PK, sont étudiés dans deux situations :

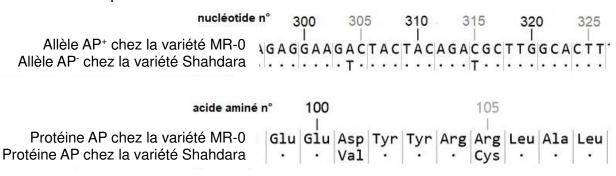
- lorsque le gène AP+ est actif, la protéine AP est produite (témoin),
- lorsque le gène AP+ est inactif, la protéine AP n'est pas produite (test).


Observation au microscope des grains de pollen produits par la variété Mr-0

Les grains viables apparaissent gris. Les grains non viables apparaissent en noir.

Protéine AP produite

Protéine AP non produite



Source: d'après Simon et al, 2021 - preprint

<u>Document 6</u> : Séquences des allèles du gène AP

On séquence le gène AP chez les variétés Mr-0 et Shahdara. Les séquences de nucléotides (du nucléotide n°297 au n°326, en haut) ainsi que les séquences d'acides aminés correspondants (de l'acide aminé n°99 au n°108, en bas) sont présentées cidessous.

Les acides aminés n°101 et n°105 jouent un rôle clé dans les capacités d'interaction de la protéine AP avec la protéine PK.

Source : d'après Simon et al, 2021 – preprint